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Abstract –  

Three-dimensional (3D) measurement that 

captures the states of construction sites is a key to 

promote ICT-supported construction processes. 

Photogrammetry composed of Structure-from-

Motion (SfM) and Multi-View Stereo is the best 

solution for it targeting small and mid-sized 

construction companies because of its high portability 

and low cost. However, it is difficult for a site worker 

to efficiently create high-quality 3D dense models by 

the photogrammetry since the model quality relies 

heavily on the manually selected camera poses. To 

solve the challenge, we proposed a new 

photogrammetry process that improves the quality 

and efficiency of 3D dense model reconstruction for 

measuring construction sites. This process starts with 

a small number of the initial photo set. Then a 

computer-supported best-view guidance system 

predicts the geometric quality of the dense model, 

estimates the best target positions for additional 

shootings using SfM results, and instructs those 

positions to a worker. The effectiveness and efficiency 

of the process and system were evaluated at a 

construction site. As a result, it was found they can 

prevent excessive image shooting, improve the 

efficiency of the on-site photographing work, and 

generate a dense model with quality assurance. We 

also found that a smartphone is the most suitable 

shooting device for implementing the process. 
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1 Introduction 

In recent years, the "i-Construction" initiative [1] for 

improving productivity at work of construction sites by 

utilizing ICT has been promoted at various places in 

Japan. On the other hand, to develop the i-Construction 

in the small and mid-sized construction companies, it is 

also essential that its supporting technologies consist of 

the ones with low initial and operational costs.  

As an essential part of the i-Construction initiative, 

three-dimensional (3D) measurement technology is 

required that captures the present states of construction 

sites at various construction stages with high frequency. 

For this purpose, terrestrial laser scanners and 3D 

photogrammetry are currently used from a practical 

perspective. Terrestrial laser scanners permit millimeter-

accuracy measurement [2]. However, the scanner devices 

and outsourcing of the measurement works involve high 

cost, and they eventually hinder the introduction of the 

laser scanners to small and mid-sized construction 

companies.  

On the other hand, 3D photogrammetry [3] shown in 

Figure 1 is slightly inferior to laser scanners in terms of 

measurement accuracy. Still, it can automatically 

reconstruct dense 3D models such as 3D point clouds and 

textured meshes from many overlapping photos. The 

photogrammetry also has a high affinity for UAV-based 

aerial photography. For these reasons, the 

photogrammetry can be introduced into small and mid-

sized construction companies more smoothly than 

terrestrial laser scanners. 

However, when trying to reconstruct the high-quality 
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Figure 1.  Typical photogrammetry process  
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3D models of construction sites by the photogrammetry 

as everyday activities and to make use of the models for 

frequent monitoring of the construction progresses, many 

challenges remain.  First, time-consuming hand-held 

shooting work with a heavy single-lens reflex camera 

must be taken by a site worker. Second, the quality of a 

dense 3D model that will be reconstructed cannot be 

confirmed on-site by the worker because the 

conventional photogrammetry pipeline consumes an 

enormous amount of the processing time. Moreover, 

finally, it is challenging to pre-estimate the optimal 

photo-shooting position and orientation so-called 

“camera pose,” where a high-quality, dense model can 

be reconstructed for a given construction site.  

This study develops a new photogrammetry process 

and computer-supported best-view guidance system that 

can streamline 3D modeling of construction sites to solve 

the challenges. The proposed process and the system can 

be introduced into everyday activities of small and mid-

sized companies by integrating a smartphone, cloud 

service, and the computer-assisted best-view guidance of 

the optimal camera poses for shootings. The industry and 

academia developed this technology, and its 

effectiveness and efficiency were evaluated 

experimentally at a real construction site. 

2 Challenges and Our Approaches 

2.1 Challenges in Conventional 

Photogrammetry Process 

As shown in Figure 1, the general photogrammetry 

pipeline of generating a dense 3D model from a set of 

phots consists of two steps: Structure-from-Motion 

(SfM) and Multi-view Stereo (MVS). SfM derives the 

camera poses and sparse corresponding points so-called 

“tie points” on real-world objects, while MVS creates a 

dense 3D model such as 3D point clouds or a textured-

mesh by multi-view stereo matching [3].  

SfM can complete its processing in a relatively short 

time. However, MVS must perform tons of stereo 

matching between every pair of overlapped photos, so it 

usually spends about 10 to 50 times more processing time 

than SfM. For example, for 100 photos, SfM requires 

only 4 min, while MVS spends 120 min. As indicated in 

this example, most of the 3D model reconstruction 

process in photogrammetry is characterized by being 

spent in the MVS step. 

As shown in Figure 2, if we try to utilize the 

photogrammetry to capture construction sites' daily 

progress, the following problems happen. 

• The resolution of a 3D model reconstructed by 

SfM-MVS depends on the resolution of the 

captured photo. Therefore, there is a strong 

tendency for high-resolution photos to be taken by 

a single-lens reflex camera. However, the single-

lens reflex camera is massive, and it has a problem 

in portability for handheld shooting in construction 

sites where the scaffolding is weak. Also, with a 

single-lens reflex camera, the upload function of 

captured photos via a network is not sufficient as 

with smartphones. Therefore, we must store all 

captured photos in the SD card in the camera first. 

After taking it back to the office, it is necessary to 

reconstruct the 3D model using photogrammetry 

software. However, this process erodes efficiency 

because the photogrammetry processing cannot be 

performed during shooting or return to the office. 

• In order to reconstruct a high-quality, dense model 

using SfM-MVS, it is necessary for a site worker to 

carefully consider the photo overlap condition and 

draw up a shooting plan in which the camera poses 

to the object are set appropriately. However, it is 

difficult for the worker to predict from which and 

how many photos should be taken to reconstruct 

high-quality models. As a result, defects such as 

holes or degraded accuracy parts often appear on 

the model. On the other hand, to avoid these, 

excessive photo shooting with a high overlap ratio 

tends to be performed. However, it makes the 

number of photos enormous, and the MVS 

processing will take an excessive amount of time. 

• To record construction sites using SfM-MVS, it is 

often necessary to take several hundred to several 

thousand photos. When the number of phots is vast 

in this way, MVS processing takes about half a day 

to a day, so it is not possible to immediately confirm 

the dense model quality on-site immediately after 

shooting. For this reason, if an unfortunate quality 

part due to lack of photos or insufficient shootings 

is found on the model after MVS, the cost and time 

loss for reshooting will be massive. 
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2.2 Our Approaches  

Therefore, to solve the above problems, the following 

new photogrammetry process is introduced in this study. 

Figure 3 shows the processing pipeline for this new 

process. The outline is as follows. 

(1) We introduce a smartphone with a high-resolution 

camera as the shooting device used on-site. 

Smartphones are lightweight, making them suitable 

for handheld shooting at construction sites. Also, by 

utilizing their internet communication function, the 

image can be automatically uploaded to the cloud 

storage (Google Drive) immediately after shooting.  

(2) The quality of the dense model that will be finally 

reconstructed from the uploaded photos is quickly 

predicted only from the SfM results by our best-

view guidance system using our quality prediction 

algorithm [4]. Besides, the best target positions for 

additional shootings that would improve the quality 

is estimated in a few minutes by the system 

connected to the cloud. 

(3) The system automatically generates an instruction 

image in which the marker symbols of these target 

positions estimated in (2) are superimposed on the 

photo of the scene saved in the cloud. Furthermore, 

the instruction image is immediately transmitted to 

the worker's smartphone at the construction site 

using a messenger application (Google Hangouts 

[5]). Then, the worker takes several additional 

photos according to the target positions on the 

instruction image and uploads them back again on 

the cloud. 

(4) By repeating the above processes (2) and (3) as 

often as necessary, the small number of target 

positions for additional shootings are estimated 

only by SfM processing, and the shootings are 

conducted according to the target positions. 

Simultaneously, the quality of the high-density 

model obtained is improved successively without 

executing any MVS processing. 

(5) After completing the shooting process of (2)-(4) 

supported by the best-view guidance system, the 

MVS process that requires much time is executed 

only once, and the final dense model is 

reconstructed. Thus, the MVS process can be 

started right after the additional shootings at the 

construction sites are completed, which improves 

the overall efficiency of the model reconstruction.  

The principle of the quality prediction of the dense 

model and the estimation of the optimum target positions 

for additional shootings will be described below. We also 

introduce the evaluations of the effectiveness and 

efficiency of the proposed photogrammetry process at a 

real construction site.  

3 Quality Prediction of Dense Model and 

Estimation of Additional Shooting 

Positions 

3.1 Approximated Triangular Mesh Model 

Generation 

Figure 4 shows the processing pipeline of the 

prediction of the dense model quality and estimation of 

the best target positions for additional shootings.  The 

geometry of the dense model is first approximated by a 

triangular mesh model generated from the triangulation 

of tie points created by SfM. The approximation method 

simplifies the one formerly proposed by Labatut et al. [6] 

to improve its computational efficiency. 

As shown in Figure 5, the triangular mesh generation 

begins with the 3D Delaunay tetrahedralization of 3D tie 

point set 𝑃 and creates a set of tetrahedral 𝐻. Then the 

intersection test is performed between every tetrahedron 

and a set of rays 𝑉𝑖 = {𝒗𝑗
𝑖} (𝒗𝑗

𝑖 = 𝒑𝑖 − 𝒄𝑗) starting from 

the projection center of the j-th camera 𝒄𝑗  to the i-th 

visible tie point position 𝒑𝑖 (𝑖 ∈ 𝑃) . If a tetrahedron 
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intersects with the ray, it is deleted, and the remaining set 

of tetrahedra is defined as 𝐻′. Finally, we obtained the 

approximated triangular mesh model 𝑀  by taking the 

surface boundary meshes of 𝐻′ . For detail algorith m, 

refer to the reference [4]. 

Figure 6(a) shows an example of the tie point set 𝑃 

and camera poses generated from 33 original phots of a 

bridge pier, and Figure 6(b) shows the approximated 

triangular mesh model corresponding to them.  

3.2 Quality Predictor Estimation 

Next, the quality predictors 𝐹𝑋(𝑖) for a dense model 

are evaluated at a sparse point 𝑖 (∈ 𝑃′, 𝑃′: sparce point 

set )  that constitutes the vertex of the approximated 

triangular mesh model 𝑀 based on the tie point set 𝑃 and 

the camera pose set 𝐸 = {𝒆𝑗 = (𝒄𝑗, 𝜽𝑗)}, where 𝜽𝑗(∈ 𝑅3) 

is a vector of three Euler angles representing the 

projection orientation of the j-th camera. The predictor 

𝐹𝑋(𝑖) quantifies how accurately the final dense model 

can be reconstructed around the sparce point 𝑖(∈ 𝑃′). The 

basic idea of the quality predictor is initially proposed by 

Mauro et al. [7], but we designed different kinds of 

predictors from [7]. 

The following four quality predictors are evaluated 

respectively at each sparce point 𝑖(∈ 𝑃′) in our method. 

• Reliability (𝐹𝑟(𝑖)):  The local geometric quality of 

the reconstructed dense model around a sparce point 𝑖  
decreases as the number of visible cameras |𝑉𝑖| 
supporting a point 𝑖  decreases. Therefore, the 

reliability predictor of the point 𝑖  is defined by 

Equation (1). 

𝐹𝑟(𝑖) = |𝑉𝑖| (1) 

• Area (𝐹𝑎(𝑖)):  When the area of a triangle on 𝑀 is 

larger, the reconstruction error of the dense model 

tends to be larger. So, the average area of the triangles 

on 𝑀adjacent to a point 𝑖  is evaluated as the area 

predictor defined by Equation (2). 

𝐹𝑎(𝑖) =
1

|𝑇𝑖|
Σ

𝑡𝑗
𝑖∈𝑇𝑖 𝑎𝑟𝑒𝑎(𝑡𝑗

𝑖) (2) 

where 𝑇𝑖 denotes a set of triangles adjacent to 𝑖.  
• Edge length (𝐹𝑒(𝑖)):  When the object surface to be 

measured is poorly textured, the edge length of a 

triangle on 𝑀 tends to be long and the point clouds 

generated by SfM become sparce. So, the average 

edge length adjacent to a point 𝑖 is evaluated as the 

Edge length predictor defined by Equation (3). 

𝐹𝑒(𝑖) =
1

|𝐷𝑖|
Σ𝑗∈𝐷𝑖𝑙𝑒𝑛𝑔𝑡ℎ(𝑒𝑗

𝑖) (3) 

where 𝐷𝑖  denotes a set of edges connected to 𝑖.  
• Baseline and height ratio (𝐹𝑏ℎ(𝑖)): Based on the 

principle of the stereovision, higher-quality 

reconstruction by MVS is obtained from a correct 

ratio between the baseline length and height. The 

baseline length is a distance between two camera 

positions 𝒄𝑗  and 𝒄𝑘 , while the baseline height is a 

distance between the space point position 𝒑𝑖 and the 

midpoint of the baseline 𝒄𝑗𝑘
′ . It is well known in 

photogrammetry that the quality of the dense model 

secures if this ratio is in the right range [8]. Therefore, 

the ratio is evaluated as the Baseline and height ratio 

predictor defined by Equation (4).   

𝐹𝑏ℎ(𝑖) =
1

|𝐽𝑖|
Σ(𝑗,𝑘)∈𝐽𝑖

(
‖𝒄𝑗 − 𝒄𝑘‖

‖𝒑𝑖 − 𝒄𝑗𝑘
′ ‖

) (4) 

where 𝐽𝑖  denotes a set of all possible camera pair 

visible from a sparce point 𝑖.  

The detail calculation of the indicators, see reference [4]. 

To consolidate the four quality predictors to one 

indicator representing the degradation of the dense model, 

first, we converted each of the predictors given by 

Equations (1–4) to a normalized energy ∈ [0,1] using the 

logistic function  𝐿( )  proposed by [7] and quadratic 

function 𝐾( ) as Equation (5). 

𝐸𝑋(𝑖) = {

𝐿(𝐹𝑋(𝑖) − 𝜇𝑋, 𝜎𝑋), 𝑋 ∈ {𝑎, 𝑒};

1 − 𝐿(𝐹𝑋(𝑖) − 𝜇𝑋, 𝜎𝑋), 𝑋 ∈ {𝑟};

1 − 𝐾(𝐹𝑋(𝑖), 𝜎𝑋), 𝑋 ∈ {𝑏ℎ},

 (5) 

where 𝜇𝑋  denotes the average of 𝐹𝑋 , 𝜎𝑋  the standard 

deviation of 𝐹𝑋, 𝐿(𝑥 − 𝜇, 𝜎) = 1/ (1 + exp (−
2(𝑥−𝜇)

𝜎
)), 

and 𝐾(𝑥, 𝜎) = 1/(1 + (𝑥 − 0.5/𝜎)2). In Equation (5), 

higher energy means that the geometry of the final dense 

model degrades more. 

Finally, the four energy values 𝐸𝑋(𝑖) are aggregated 
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by taking an average to denote a geometry degradation 

indicator at a sparse point 𝑖 as 𝐸𝐺𝐷𝐼(𝑖) as Equation (6). 

𝐸𝐺𝐷𝐼(𝑖) = (𝐸𝑟(𝑖) + 𝐸𝑎(𝑖) + 𝐸𝑒(𝑖) + 𝐸𝑏ℎ(𝑖))/4 (6) 

A region with high indicator value 𝐸𝐺𝐷𝐼(𝑖)  on the 

approximated triangular mesh model 𝑀′  indicates that 

the local region around the sparse point 𝑖 on the dense 

model has a more significant possibility of degrading the 

geometry. It also implies that valid photos are lacking in 

the region with a high indicator value and that additional 

photos should be preferentially shot to improve the dense 

model quality of the region around the point 𝑖.  
Figure 7(a) shows the distributions of the indicator 

values 𝐸𝐺𝐷𝐼(𝑖)  on the approximated mesh model 𝑀  of 

the pier in Figure 6. The predicted quality of the upper 

part of the pier is low (red), which suggests that the photo 

capturing in this area were insufficient. Figure 7(b) 

shows a dense model generated by MVS from the 

original 33 photos. In Figure 7(a), the upper parts of the 

pier shape with high indicator values were not fully 

reconstructed in the dense model. It can be seen that the 

quality prediction based on the geometry degradation 

indicator 𝐸𝐺𝐷𝐼(𝑖) is functioning. 

3.3 Estimation of Additional Shooting 

Positions 

Low-quality areas on a dense model should be 

improved by additional shootings as efficiently as 

possible. To this end, it is preferable to determine the 

target positions of the shooting that includes as many 

low-quality areas as possible in an additional shooting 

photo. Therefore, based on the geometry degradation 

indicator, the target points for the additional shootings 

are selected by the optimization. 

First, for every sparce point 𝑖(∈ 𝑃′)  on the 

approximated model 𝑀 , the geometry degradation 

indicator 𝐸𝐺𝐷𝐼(𝑖) value is added as an attribute value 𝑤𝑖 . 
Then, the degree of  degradation in the peripheral region 

of 𝑖  is estimated both from a target point 𝑗(∈ 𝑃′)  and 

from the indicator values of the sparce points 𝑖′ included 

in the region near the target point 𝑗 . The additional 

shooting should be oriented to cover the areas with most 

considerable geometry degradation. Finally, 𝑠 target 

points for additional shootings are derived from the 

sparce point set 𝑃′ using the combinatorial optimization 

and greedy method.  For details of the optimization, refer 

to reference [4]. 

Figure 8(a) shows the three low-quality areas and the 

target points for additional shooting, which were derived 

from the distribution of the geometry degradation 

indicators in Figure 7(a) with 𝑠 = 3. The indicator values 

in the areas around the target points are higher than in 

other areas, and the target points can be placed at the low-

quality areas appropriately.  

Furthermore, Figure 8(b) shows a dense model 

reconstructed by MVS from 36 images, including the 

three additional photos corresponding to the three target 

points. Compared to the model generated from 33 initial 

images in Figure 7(b), the reconstructed area at the top of 

the pier increased significantly despite only three added 

images. Therefore, the effectiveness of the target point 

selection algorithm can be confirmed.  

4 Case Study 

4.1 Evaluation of Reconstruction Qualities  

A case study was conducted at a seawall construction 

site shown in Figure 9 (51m × 2.4m) on the Toyoura 

coast in Tomamae-Cho, Hokkaido. The proposed 

photogrammetry process was performed where the 

original photographing, quality prediction of the dense 

model, on-site best-view guidance, and additional photo 
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shooting were repeated to record the work of the 

installation of wave-dissipating blocks.  

In order to decrease the image uploading time from a 

camera to the cloud system, a smartphone (HUAWEI 

Mate20-Pro) with a built-in high-resolution camera was 

used. The image resolution was set to 9.7 million pixels 

to suppress the transfer time, and the wide-angle lens was 

used for the shooting. By using a smartphone, images 

could be automatically uploaded to Google Drive 

immediately after shooting. Also, with this image 

resolution setting, the upload time can be significantly 

reduced to within a few seconds per image. Since the 

server computer for SfM and best-view guidance does 

not necessarily have to be installed near the construction 

site, we installed it in the Sapporo campus of Hokkaido 

University. The high-speed internet connection is 

available between the university building and the 

construction site of the Toyoura coast. 

Figure 10 outlines the processing flow of this case 

study. As the original photos, 44 images were taken from 

sparse positions with the smartphone camera by an on-

site worker while walking on the top of the wave-

dissipating blocks. Next, the next best target positions for 

the additional shooting were estimated. Then, an 

instruction image was generated on the server-side and 

sent to the smartphone of the worker. Finally, according 

to the instruction image, the worker photographed 5 to 10 

additional photos once and repeated the process of 

transmitting to the server-side three times. The time taken 

for the process is summarized in Table 1.  

Figure 11 shows the dense model reconstructed by 

MVS from only 44 original photos, the estimated best 

shooting target positions, the corresponding instruction 

images, and the example of the photos added by the 

worker. The dense model geometries generated by MVS 

with those additional images added at each stage are also 

shown in Figure 11.  

As can be seen from Figure 11, it is possible to 

visually confirm that the 3D model can be generated with 

relatively good quality even for the images captured by 

the built-in camera of a smartphone. Besides, using the 

model quality prediction and estimation of the best target 

position for additional shootings, the defects and holes 

between blocks generated in the model reconstructed 

from the original images finally disappeared in the model 

after the image addition, and the correct block geometry 

could be reproduced.  The area near the drainage pipes 

on the upper left of the slope was greatly expanded. Also, 

as shown in Table 1, estimating the best shooting target 

position once could be completed in about 1.5 minutes. 

From the above results, using the built-in camera of 

the smartphone as a shooting and communication device 

is suitable for 3D measurement of construction sites by 

photogrammetry process in which the model geometry is 

successively improved. Although it depends on the 

number of shots, it was suggested that the proposed 

process might be able to complete the reconstruction of 

the dense 3D model on the day of the on-site shot. 

On the other hand, some areas around the blocks still 

require the additional shootings, and it was left as an open 

problem for setting the criteria for terminating these 

repetitive shooting processes. 

4.2 Estimation of Processing Efficiency 

Finally, a trial calculation was performed to quantify 

how efficient the dense model reconstruction by the 

proposed photogrammetry process is compared to the 

conventional process. In the calculation, we compared 

the processing times when the following processes (1) to 

(3) were carried out, taking the example of generating a 

dense model of the construction site in the Toyoura coast 

in Section 4.1.  

Figure 9.  Scene of the construction site of wave-

dissipating block installations at Toyoura coast 

Figure 10. Processing flow of the case study 

Table 1. Processing time in the proposed 

photogrammetry process 

SfM

Tie points & 

camera poses

Dense model quality prediction & 

Estimation of reshooting target positions

Additional shootings

Generation of

instruction images

for reshooting

Manual 

additional 

shootings

Additional 

photos

Repeated

3 times

Target 

position

Sending the image to 
a site worker’s  
smart phone 

by Google Hangouts

Original 

shooting 
(44 photos)

Tie points & 

camera poses

LowHigh Quality

Predicted 

low-quality region

Total photo #
(Additional photo 

#)

Time for SfM 

processing

Time for estimating 

the best target 

positions

Time for 

MVS 

processing

Original 44 1 min 30 sec 3.96 sec 15 min

1st

Addition
49 (5) 1 min 20 sec 4.17 sec -

2nd

Addition
58 (9) 1 min 20 sec 5.08 sec -

3rd

addition
68 (10) 1 min 40 sec - 20 min

Red Bold： Processing time actually required for 

the dense model generation using the proposed process
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(1) A conventional process where a dense model was 

reconstructed by performing the SfM-MVS in a 

lump for around 400 photos excessively captured in 

the site.  

(2) First, 44 original photos were acquired, and a dense 

model was generated once by SfM-MVS. Next, the 

user visually confirms the low-quality portions of 

the dense model, manually determines the 24 target 

points for additional shootings. Finally, the user re-

executes SfM-MVS for a total of 68 images to 

reconstruct a final dense model. 

(3) Using the proposed process, starting from the 

shooting of 44 original images, performing the SfM, 

deriving the shooting target positions with a 

computer, adding five, nine and ten photos, 

respectively. And finally, the dense model was 

reconstructed by performing MVS only once for the 

68 images acquired.  

The bar chart in Figure 12 shows the comparison 

results. In estimating the processing time, referring to the 

values obtained from the example in Section 4.1, the 

required shooting time per photo was estimated to be 15 

seconds. The SfM and MVS processing time per photo 

was 0.03 and 0.3 min, respectively. Moreover, the 

estimation time of the shooting target positions was 

assumed to be constant at 6 seconds. Also, the photo 

upload time was included in the shooting time because it 

was only a few seconds per photo. 

As can be seen from the comparison in Fig. 17, the 

process (1) requires about 3.5h to reconstruct the dense 

Figure 11.  Change in the dense models by 1st, 2nd and 3rd additional shootings 

0 50 100 150 200 250

Quality of the 

dense model: 

Shooting MVSSfM

△

Quality of the 

dense model: △

Quality of the 

dense model: 〇

Total processing time[min]

(3) Proposed
photogrammetry 
process 

40min

52min

208min

(2) Conventional
photogrammetry 
process with one-time 
additional shooting

(1) Conventional
photogrammetry 
from excessive 
original shootings

Figure 12.  Comparison of the total processing time 

among (1) conventional photogrammetry process 

with excessive shootings, (2) conventional 

photogrammetry process with one-time additional 

shooting and (3) the proposed photogrammetry 

process 
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model from the excessively captured photos. On the other 

hand, in the proposed process (3), the dense model can 

be reconstructed in a short processing time of 40 min 

which only took one-fifth of the process (1). 

Also, since the process (1) requires MVS processing 

for many photos, the quality of the dense model cannot 

be confirmed until 3.5 hour after the shooting. On the 

other hand, in the proposed process (3), although it is an 

estimation, the shooting target positions that reflect the 

prediction of the dense model quality for the currently 

captured photos can be fed back to the on-site worker in 

a waiting time of about 2-3 minutes right after the photo 

capturing. Thus, it is possible to prevent forgetting to take 

photos or insufficient shooting at the site and to realize 

efficient shooting work. 

Furthermore, in processes (1) and (2), the selection of 

the shooting positions is left to the user, so there is no 

guarantee that the additional photos will improve the 

reconstruction model's quality. On the other hand, in the 

process (3), since the computer selects the best positions 

at which additional photos should be shot based on the 

model quality estimation, unlike in processes (1) and (2), 

it is highly possible that additional photos will effectively 

contribute to the quality improvement of the 

reconstructed dense model. 

5 Conclusion 

We proposed a new photogrammetry process that 

improves the quality and efficiency of dense model 

reconstruction of construction sites. This process starts 

with a small number of the original photo set. Then the 

computer-supported best-view guidance system predicts 

the geometric quality of the dense model, estimates the 

best target positions for additional shootings only using 

SfM results, and feedback those positions to a site worker. 

The feedback could complete only in a few minutes.  The 

effectiveness of the proposed process and the system was 

evaluated at a construction site. As a result, it was found 

they could prevent excessive image shooting, improve 

the efficiency of the on-site photographing work, and 

generate the dense model with a certain degree of quality 

assurance. We also found that a smartphone, which is 

easy to send and receive images to and from the 

construction site, was the most suitable shooting device 

for implementing the process. 

However, at present, some of the operations on the 

server-side still require manual processing. In the future, 

we would like to implement the fully automated 

processes that include SfM and best view guidance on the 

cloud server. 
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